Aquatic Plant Management Team Research Overview

Bradley T. Sartain PhD
US Army Engineer Research & Development Center
Environmental Laboratory
Vicksburg, MS

Outline:

- 1. USACE/Aquatic Plant Management History
- 2. Aquatic Plant Management Team
 - Personnel
 - Chemical Control R&D Capabilities
 - **Funding Sponsors**

3. Project Examples

- Civil Direct Allotted (APCRP)
 - > Flowing Water Research
 - ☐ Flowering Rush Control in the Run-of-the-River Reservoirs
 - ➤ Refining Herbicide Application Technology
 - ☐ Target Plant Herbicide Interception
 - > New Product Development
 - ☐ Field Evaluations for Managing Monoecious Hydrilla with Florpyrauxifen-benzyl
 - ➤ Linking Plant Biology, Phenology, and Management
 - ☐ Genotypic Variability: Implications for Establishment, Spread, and Management of Flowering Rush
- Civil Reimbursable Projects

USACE Protects and Manages

- 12,000,000 acres of natural areas
- 12,000 miles of inland and intracoastal waterways
- 218 lock chambers at 176 sites
- 1,067 coastal, Great Lakes, and inland channels and harbors
- 740 dams and associated structures
- 75 hydroelectric power plants
- 136 multi-purpose reservoirs
- 456 lakes in 43 states
- #1 Federal provider of outdoor recreation

Impacts of Invasive Aquatic Plants to USACE Activities

- Navigation
- Flood Risk Management
- Ecosystem Restoration
- Hydropower
- Regulatory
- Recreation

Aquatic Plant Management Team

Team Mission:

Provide R&D services for development, evaluation, registration and field guidance for environmentally compatible use of techniques to selectively manage invasive vegetation in public waters and wetlands.

R&D Focus Areas:

Chemical Control; Biological Control; Phenology; and Biological Invasions

ERDC-Vicksburg Campus:

Dr. Bradley Sartain

Dr. Kurt Getsinger

Dr. Ian Knight

Remote Sites:

Dr. Christopher Mudge ERDC, LSU, Baton Rouge, LA

Dr. Benjamin Sperry ERDC,UF-CAIP, Gainesville, FL

Dr. Nathan Harms ERDC, LAERF, Lewisville, TX

APMT – Chemical Control Capabilities

- <u>Conduct</u> in-house R&D to improve use of USEPA-registered products for managing invasive aquatic vegetation
 - Develop environmentally compatible chemical strategies for managing historical weed problems & new invaders hydrilla, water hyacinth, Eurasian watermilfoil, giant salvinia, flowering rush, hybrid watermilfoil
- Serve as the Federal Subject Matter Expert for chemical control issues
 - USEPA, state regulatory, and Federal/state resource management agencies
- <u>Collaborate</u> with registrants to develop/evaluate products for use across U.S.
 - Develop stewardship programs to prevent/mitigate future herbicide resistance

From the Laboratory to the Label

small-scale testing to field verification

In-House Facilities

- Walk-in environmental growth chambers
- Green houses
- Outdoor mesocosms
- Experimental ponds

Field Verification Studies

Funding Sponsors

Civil Direct:

- Aquatic Plant Control Research Program
- Aquatic Nuisance Species Research Program

Recent Civil Reimbursables:

- CE Districts (Buffalo, New Orleans, Jacksonville, Omaha, Seattle, Walla Walla)
- State Agencies FWC, LDWF, WIDNR, MNDNR, MDEQ
- Great Lakes Restoration Initiative

Aquatic Plant Control Research Program (APCRP)

Research Focus: biology and ecology of invasive aquatic plant species; technologies to manage invasive aquatic plants

Focus Areas:

- Chemical, biological, and integrated control methodologies
- Management strategies and applications
- Harmful algae

The APCRP is the only federally authorized R&D program for aquatic plant management

Flowering Rush Control in Hydrodynamic Systems: SON-1173

<u>Problem</u>: Flowering rush (*Butomus umbellatus* L.) spreading throughout the Pacific Northwest

Goals: Develop effective, rapid-response treatment options to control and limit the spread of flowering rush in a run-of-the-river reservoirs

Objectives

- 1) <u>Field studies:</u> Determine water-exchange patterns and investigate innovative methods for reducing water exchange to enhance herbicide concentration/exposure times (CETs)
- 2) <u>Growth chamber/greenhouse studies:</u> Determine herbicide CETs to control submersed flowering rush

3) <u>Field Studies:</u> Link herbicide CETs with *in-situ* water exchange patterns for selective

control of submersed flowering rush

| The state of the submersed flowering rush | The state of the state of

US Army Corps of Engineers • Engineer Research and Development Center

Research Benefits

- Important new information on controlling flowering rush in hydrodynamic systems
- Development of innovative methods to reduce water exchange and increase herbicide CETs
- Operational guidance to CE Projects
 - •Improve herbicide application strategies
 - •Protecting critical habitat of threatened endangered species

Refining Foliar Herbicide Applications to Improve Control of Emergent Plants: SON #1300

Problem:

- Herbicides are an effective tool for invasive species management
- Public concern over herbicide entry into water
- Toxicological risk assessment based on 100% herbicide deposition into water

Some Herbicide Reaches Water...

Complicated....so how much?

What influences herbicide interception?

- Plant density
 - % canopy coverage
- Application techniques
 - Broadcast vs. spot spray
 - Spray/carrier volume (GPA)
 - Spray impact angle
 - Equipment (boom vs. handgun)
- Plant structure/architecture
 - ► Narrow vs. broadleaves
 - Waxy glabrous vs. pubescent leaves
 - Plant height and biomass

Research Challenges

- No template no established guidelines
- Require innovative methods/protocols for all phases of work

Objectives:

- Develop methods for quantifying aqueous herbicide concentrations (Mesocosm/Field Scale)
- Evaluate influence of application technique, adjuvants, plant architecture, leaf surface morphology, and plant density on herbicide interception
- Provide guidance for managing plant stands with foliar-applied herbicides to maximize spray retention on the foliage

US Army Corps of Engineers • Engineer Research and Development Center

Research Benefits

- Link spray techniques and use patterns to determine aqueous herbicide levels after foliar treatments of floating, emergent, and creeping plants
- Provide guidance to USACE Districts and other agencies to make science-based decisions regarding potential impacts of such treatments
- Overcome agency concerns in controlling invasive plants more efficiently and cost effectively, restoring valuable aquatic ecosystems
- Optimize BMPs for foliar herbicide applications

Field Evaluations for Managing Monoecious Hydrilla using Florpyrauxifen-benzyl (ProcellaCOR®)

Problem: Data limited to small-scale CET & species selectivity studies; data supplementary to florpyrauxifen-benzyl (FPB) use in the field needed

Goal: Develop field verified FPB treatment strategies for managing monoecious hydrilla

Objectives

- Site surveys, mapping, and site selection
- Water exchange evaluations
- Pre-treatment vegetation assessments
- Herbicide application + water exchange (FPB + Rhodamine WT dye)
- Herbicide residue sampling
- Post-treatment vegetation assessments

Research Benefits

- Important new information for operational use of florpyrauxifen-benzyl targeting monoecious hydrilla in the field
- Improvement of herbicide application strategies and reduction of associated management costs over time
- Field verification approach has been proven to result in effective environmentally compatible aquatic herbicide labels for use in CE and other public water bodies
- Promotes sustainable ecosystem management and the protection of critical habitat for listed threatened/endangered species

Genotypic Variability and Implications for Establishment, Spread, and Management of Flowering Rush (*Butomus* umbellatus): SON #1437 & 1471

Background:

Multiple genotypes in one of two cytotypes

Cytotype	Genotype
Triploid	G1
Diploid	G2, G3, G4, G5

- To date, the majority of research focused on
 - Ecological characteristics of diploid vs. triploid
 - Management of triploid plants

Diversity and origins of *Butomus umbellatus* (flowering rush) invasion in North America

John F. Gaskin 4, 4, Jennifer Andreas b, Brenda J. Grewell c, Patrick Haefliger d, Nathan B. Harms c

Unknown Factors

- Successful establishment and spread of diploid vs. triploid plants
- Dynamics of spread (i.e. propagule production and viability)
- Management approaches to effectively and selectively control both cytotypes

Purpose:

- SON #1437 & 1471: CE Districts LRB & NWW
- Define the factors leading to the successful establishment and spread of cytotype and/or distinct genotype of flowering rush (e.g. propagule buoyancy, water depth, light, temperature, etc.)
- Determine whether each cytotype and/or distinct genotype will show a differential response to management

Recent infestation in Omaha, NE and evidence for importance of bulbils

Research In Progress

- Spread-spatial dynamics and herbicide trial
- Shade and cold stratification impacts on propagule sprouting
- Growth response under different temperature regimes
- Herbicide screening trials
- Development of field verification trial

Phenology-study of cyclic and seasonal natural phenomena, especially in relation to plant and animal life.

(i.e. the life history, seasonal growth, and carbohydrate storage patterns of target aquatic weeds)

Why is it important to flowering rush management?

- Identify significant life history stages or structures to target for management
- Identify low points or dynamics in starch storage to facilitate management
- Ideally, collect data from sites spanning a large area

Leveraging Opportunity?

Phenology of Diploid Flowering Rush

- ➤ In 2020-2021, established three study sites:
 - Mentor Marsh in Lake Erie (Mentor, OH)
 - Tonawanda WMA (NY)
 - Unity Island (Buffalo, NY)
- ➤ Contract with MNSU- Mankato for
 - Biomass/ starch analyses
 - Supporting a M.S. Student- Max Gebhart
- Data collection May November 2021
- Repeat data collection from May through November 2022

How phenological "weak points" can maximize control

Control

Imazamox

APMT Recent Civil Reimbursable Research

USACE-SAJ

- Application systems for floating plant control
- Evaluation of mechanical harvesting for water hyacinth control & nutrient mitigation in Lake Okeechobee, FL

USACE-SAM

• Novel application techniques for hydrilla control in flowing systems

USACE-NWW

• Herbicide demonstrations to control submersed flowering rush in the Columbia River Basin

FL Fish and Wildlife Conservation Commission (FWC)

- Improving efficiency in APM operations
- New herbicide use pattern development for APM and invasive wetland species

LA Department of Wildlife Fisheries (LDWFP)

• Herbicide screenings on invasive nuisance plants

Private Industry and Non-profit Organizations

• Develop and evaluate products for use

Questions?

Contact Information:

Bradley T. Sartain PhD
Research Biologist
Environmental Laboratory ERDC
US Army Corps of Engineers
3909 Halls Ferry Rd.
Vicksburg, MS 39180

Ph: 601-634-2516

Email: Bradley.T.Sartain@erdc.dren.mil

Districts

US Army Corps

of Engineers ®

NC STATE UNIVERSITY

The University of Georgia

